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Abstract. Linear and nonlinear optical absorption spectra are studied theoretically for semiconductor
nanorings penetrated by a magnetic field. Due to the Aharanov-Bohm effect the spectral position as well
as the oscillator strength of the exciton change periodically as function of the magnetic flux enclosed by the
ring. In the nonlinear differential absorption spectra it is found that the magnetic field strongly modifies
Coulomb many-body correlations. In particular, the magnetic-field-induced increase of the exciton binding
energy is accompanied by a decrease of the biexciton binding energy. The persistence of these effects in
the presence of energetic disorder is analyzed.

PACS. 71.35.Cc Intrinsic properties of excitons; optical absorption spectra – 78.66.-w Optical properties
of specific thin films – 42.50.Md Optical transient phenomena: quantum beats, photon echo, free-induction
decay, dephasings and revivals, optical nutation, and self-induced transparency – 03.65.Bz Foundations,
theory of measurement, miscellaneous theories

1 Introduction

During the past two decades optical properties of semicon-
ductor nanostructures with reduced dimensionality have
been investigated in numerous experimental and theoret-
ical studies. Such systems are highly interesting from the
fundamental point of view, since they offer ways of study-
ing, for example, interaction processes in reduced dimen-
sion. Furthermore, due to the possibility of designing the
optical and electronic properties they are important for
many applications. In particular, magnetic-field-induced
effects in ring-like semiconductor nanostructures have at-
tracted some attention [1–3]. The optical properties of
such semiconductor nanorings were investigated experi-
mentally by infrared spectroscopy which probes intraband
and intersubband transitions [3]. Also the interband pho-
toluminescence of charged rings [4] and the exciton ab-
sorption [5] have been studied.

In this paper we present a theoretical approach and
numerical results for a simple model system which allows
us to investigate the linear and, in particular, nonlinear
optical properties of interband transitions in semiconduc-
tor nanorings with magnetic field and disorder. For narrow
ordered rings we reproduce the findings of references [6]
and [7] which showed that in the linear absorption spectra
the spectral position of the exciton as well as its oscillator
strength change periodically with the magnetic flux Φ en-
closed by the ring. The period of these oscillations is given
by the flux quantum Φ0 = hc/e.
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We compute nonlinear pump-probe spectra for
counter-clockwise polarized pulses and predict that the
magnetic field strongly influences Coulombic many-
particle correlations. In this geometry the differential ab-
sorption spectra of ordered systems are purely induced by
many-body correlations as long as only heavy-hole and no
light-hole transitions are relevant [8–11]. In particular, it
is shown that the binding energy of the bound biexciton
changes as function of Φ. For Φ/Φ0 = 0.5 it is smaller
than without magnetic field, whereas the exciton bind-
ing energy behaves the opposite way. The origin of the
magnetic-field-induced modifications of the spectral posi-
tions of bound and unbound biexcitons is discussed. Our
findings demonstrate that the Aharanov-Bohm effect [12]
does influence quasiparticles like excitons and biexcitons
and that it should be possible to investigate such effects
using optical interband spectroscopy.

As realistic nanostructures exhibit some structural dis-
order on mesoscopic scales we study the influence of en-
ergetic disorder on the magnetic-field-induced changes of
the linear and nonlinear absorption spectra. It is shown
that the excitonic shift survives in the presence of ener-
getic disorder, even when the disorder-induced inhomo-
geneous broadening of the absorption lines exceeds the
magnetic-field-induced shift of the exciton line. Further-
more, we show and discuss results on linear and nonlinear
optical spectra of single disordered rings.

We start in Section 2 by introducing our theoretical
approach. The action of the magnetic field in the ring is
discussed in Section 2.1. The equations of motion that
are used to describe nonlinear optical processes including
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many-body correlations within the coherent third-order
(χ(3)) limit are derived and discussed in Section 2.2. This
extends our previous analysis of the coherent dynamics of
magnetoexcitons [13] by including interacting two-exciton
states, which are known to strongly influence the optical
response already in the χ(3) limit. Details on the model
system used here are given in Section 2.3. Numerical re-
sults on linear and nonlinear optical spectra are presented
and analyzed in Section 3. We first focus on the ordered
case in Section 3.1 and then include energetic disorder in
Section 3.2. The paper closes with a brief summary in
Section 4.

2 Theoretical approach

2.1 Magnetic field in ring geometry

To model a ring we use a finite number of equidistantly
spaced sites (N) and apply periodic boundary conditions.
Each localized site carries states with energies εcn and εvn
which due to the coupling between the sites give rise to the
conduction and valence bands. In our finite and discrete
model system the electronic couplings of the respective
bands are described by a matrices T cnm and T vnm [13]. The
energies εcn and εvn are the diagonal elements T cnn and T vnn.
In the absence of disorder they are taken as half the tran-
sition energy of a single site, i.e. T cnn = Eg/2 (for the holes
we use T vnn = Eg/2). The inclusion of energetic disorder
is discussed in Section 3.2.

The nondiagonal matrix elements of T define the cou-
plings between of the localized basis states. Within the
tight-binding approximation the only nonvanishing off-
diagonal elements are T cn,n+1 and T cn+1,n. In the absence of
a magnetic field the coupling is independent of the direc-
tion, i.e. T cn,n+1 = T cn+1,n = Jc and T vn,n+1 = T vn+1,n = Jv.

In the presence of a magnetic field the nearest-
neighbour coupling is given by [13]

T cn,n+1 = Jc exp[i2π(Φ/N)/Φ0] ,

T cn+1,n = Jc exp[−i2π(Φ/N)/Φ0] (1)

for the conduction band. Accordingly, the positively
charged holes in the valence band are described by

T vn,n+1 = Jv exp[−i2π(Φ/N)/Φ0] ,

T vn+1,n = Jv exp[i2π(Φ/N)/Φ0] . (2)

Compared to the case without magnetic field, the tight-
binding coupling parameters Jc and Jv are thus multiplied
by a phase factor which depends on the magnetic flux Φ
through the ring [14,15]. Φ0 = hc/e is the flux quantum.

One can easily see how the magnetic field acts in
reciprocal space. Without magnetic field and disorder
the eigenfunctions of the tight-binding model are plane
waves, i.e.

Ψk(n) = (1/
√
N) exp[iknd] , (3)

where n is an integer and d is the distance between the
sites. The energies follow a cosine dispersion −2J cos[kd]

and the allowed values for the wavevector are quantized
and can be chosen as

k = −2π
d

N
2 − 1
N

,−2π
d

N
2 − 2
N

, ...,
2π
d

N
2

N
· (4)

With magnetic field the flux-dependent phase factor must
be taken into account and we thus have

k = −2π
d

N
2 − 1− Φ/Φ0

N
,−2π

d

N
2 − 2− Φ/Φ0

N
, ...,

2π
d

N
2 − Φ/Φ0

N
· (5)

Thus the allowed values for the wavevector are simply
shifted by a constant value that is proportional to the
flux [14,16].

2.2 Equations of motion including many-body
correlations

To calculate optical properties of semiconductor nanorings
we use the same approach as described in references [9,17].
We express the nonlinear optical response using the so-
called dynamics-controlled truncation scheme up to the
coherent χ(3)-limit [18,19]. In this limit the optical re-
sponse can be fully expressed by correlation functions de-
scribing excitation of single and two electron-hole-pairs,
i.e. exciton and biexciton amplitudes.

We start from the general Hamiltonian [20]:

H = H0 +HC +HI, (6)

where H0 is the single-particle Hamiltonian, HC describes
the Coulomb interaction, and HI the interaction with a
classical electric field.

Using second quantization the single-particle Hamilto-
nian H0 reads in a localized real-space basis:

H0 =
∑
nmc

T cnmc
c+
n ccm +

∑
nmv

T vnmd
v+
n dvm. (7)

Here, cc+n (ccm) creates (destroys) an electron at site n (m)
in band c and dv+

n (dvm) creates (destroys) a hole at site n
(m) in band v.

The Coulomb Hamiltonian HC is used as:

HC =
1
2

∑
nmνν′

(cν+
n cνn − dν+

n dνn)Vnm(cν
′+
m cν

′

m − dν
′+
m dν

′

m),

(8)

where Vnm describes the monopole-monopole Coulomb in-
teraction between particles at sites n and m and the super-
scripts ν and ν′ label the relevant valence and conduction
bands. HC includes the repulsion between electrons and
between holes, as well as the electron-hole attraction.

The coupling of the electronic system to a classical
electric field is described by:

HI = −E(t) ·P
= −E(t) ·

∑
nmvc

[µvcnmd
v
nc
c
m + (µvcnm)∗cc+m dv+

n ], (9)
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where P is the total optical interband polarization, which
is given by summing over all microscopic polarizations
µvcnmd

v
nc
c
m and µ is the dipole matrix element for the

optical transition between the valence and conduction
bands. Since the nonlinear optical response depends sig-
nificantly on the polarization directions of the incident
pulses [8,9,17,21], the vector character of E, µ, and P is
important and thus is included here.

Using the total Hamiltonian H and the Heisenberg
equation, one obtains the equation of motion of the inter-
band coherence pv1c2

12 = 〈dv1
1 c

c2
2 〉. Due to the many-particle

Coulomb interaction the equations for expectation values
of two operators, are coupled to four operator correlation
functions [18,19], which is just the beginning of the infinite
many-body hierarchy.

Considering optical excitation with weak intensities al-
lows us to restrict the theoretical description to third or-
der in the optical field. Furthermore, dephasing processes
due to scattering with other quasiparticles are neglected.
These two assumptions define the coherent χ(3)-limit. In
this limit the electron and hole populations and coher-
ences do not have to be treated as independent variables
but can be expressed as [18,19]

f c1c212 = 〈cc1+
1 cc22 〉 =

∑
ava

pvac2a2 (pvac1a1 )∗ , (10)

fv1v2
12 = 〈dv1+

1 dv2
2 〉 =

∑
aca

pv2ca
2a (pv1ca

1a )∗. (11)

Similarly, the four-point terms appearing in the direct
evaluations of the equation of motion for p can be written
as [18,19]

〈dva+
a dv1

1 d
va
a c

c2
2 〉 =

∑
bcb

〈dv1
1 c

cb
b d

va
a c

c2
2 〉(pvacbab )∗. (12)

Applying these conservation laws the nonlinear optical re-
sponse can be expressed using just two transition-type
quantities which describe the coherences between a sin-
gle and two interacting electron-hole pairs.

It is convenient to remove the uncorrelated parts from
the four-particle correlation function and to define [9,21]

B̄v1cvc2
1234 = 〈dv1

1 c
c
2d
v
3c
c2
4 〉 − pv1c

12 p
vc2
34 + pv1c2

14 pvc32. (13)

This procedure results in closed equations of motion for
the single-exciton amplitude pvc12 and the (reduced) two-
exciton amplitude B̄v1cvc2

1234 . The equation of motion for the
single-exciton amplitude p and the two-exciton amplitude
B̄ read:

−i∂tpvc12 =−
∑
j

T c2jp
vc
1j −

∑
i

T vi1p
vc
i2 + V12p

vc
12

+ E(t) · [(µvc12)∗ −
∑
abv′c′

((µvc
′

1b )∗(pv
′c′

ab )∗pv
′c
a2

+ (µv
′c
b2 )∗(pv

′c′

ba )∗pvc
′

1a )]

+
∑
abv′c′

(Va2 − Va1 − Vb2 + Vb1)[(pv
′c′

ba )∗pv
′c
b2 p

vc′

1a

− (pv
′c′

ba )∗pv
′c′

ba pvc12 − (pv
′c′

ba )∗B̄v
′c′vc
ba12 ], (14)

and

−i∂tB̄v
′c′vc
ba12 =−

∑
i

(T c2iB̄
v′c′vc
ba1i + T vi1B̄

v′c′vc
bai2

+ T caiB̄
v′c′vc
bi12 + T vibB̄

v′c′vc
ia12 )

+ (Vba+Vb2+V1a+V12−Vb1−Va2)B̄v
′c′vc
ba12

− (Vba + V12 − Vb1 − Va2)pvc
′

1a p
v′c
b2

+ (V1a + Vb2 − Vb1 − Va2)pv
′c′

ba pvc12. (15)

The first line in equation (14) defines the homogeneous
part of the equation of motion for p, which includes the
electronic energies and couplings (T ) and the electron-
hole Coulomb attraction (V12). The next lines describe
different types of driving terms. In addition to the lin-
ear source term given by the external field times the
dipole transition matrix element, E(t) · µ∗, in the coher-
ent χ(3)-limit there are the optical nonlinearities arising
from three processes. The first one is the Pauli blocking,
E(t) ·µ∗p∗p, which is the only nonlinearity present in the
optical Bloch equations where Coulomb interactions are
neglected. The other two nonlinearities are induced by the
many-body Coulomb interaction. They include the first-
order Coulomb contribution (V p∗pp) and the correlation
contribution (V p∗B̄) [8,9,21], which involves two-exciton
resonances.

The first three lines in equation (15) constitute the
homogeneous part of the equation of motion for B̄, which
includes the electronic energies and couplings (T ) as well
as the six possible Coulomb-interactions between the two
electrons and the two holes. The eigenmodes of B̄ corre-
spond to correlated complexes of two electrons and two
holes, i.e. two-exciton states, including both bound biex-
citonic and unbound continuum states. The last two lines
in equation (15) represent the inhomogeneities. Since the
uncorrelated contributions have been removed from B̄ it
is purely driven by sources which are proportional to the
many-body interaction V [9,21], i.e. by terms proportional
to V pp.

The total interband polarization P is obtained from
the sum

P =
∑
nmvc

µvcnmp
vc
nm. (16)

Equations (14) and (15) fully determine the interband po-
larization P within the coherent χ(3)-limit [8,9,18,19,21],
also in the presence of disorder [17]. They have been used
to analyze two-pulse experiments like pump-probe [8–11]
and four-wave-mixing [17] spectroscopy. Alternatively,
this set of equations for p and B̄ can also be derived in k-
space. For a spatially homogeneous system such equations
have been presented in reference [21].

2.3 Model system

We use a regularized Coulomb-interaction potential to
avoid the divergence of the exciton binding energy in one
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dimension,

Vnm = U0
d

Nd
π sin[ πN |n−m|] + a0

· (17)

Here Nd is the circumference of the ring and U0 and a0 are
parameters characterizing the strength of the interaction
and its spatial variation, respectively. The sin function in
the denominator of equation (17) is needed to describe
the distance between sites n and m on the ring. For quan-
tum wires it has been shown that with a properly chosen
a0, which depends on the wire radius, such a regularized
Coulomb potential is well suited to describe exciton and
biexciton energies [22].

Concerning the band structure we consider two va-
lence and conduction bands, respectively. For the valence
bands we include the two energetically degenerate heavy-
hole bands. These are characterized by the states |−3/2h〉
and |3/2h〉, respectively. The two energetically degenerate
conduction bands are |−1/2e〉 and |1/2e〉. The light fields
are assumed to propagate perpendicular to the system ex-
tension in the z-direction. We use the usual dipole matrix
elements [9,21]:

µ11
nm = δnmµ0σ

+ = δnm
µo√

2

(
1
i

)
,

µ12
nm = µ21

nm = 0,

µ22
nm = δnmµ0σ

− = δnm
µo√

2

(
1
−i

)
,

(18)

where µ0 is the modulus of the matrix element for the
heavy-hole transition. Consistent with the tight-binding
description the optical transitions are taken as diagonal
in the site index. Due to these selection rules (Eq. (18)),
we have two separate subspaces of states, which are op-
tically isolated but coupled by the many-body Coulomb
interaction.

In our subsequent numerical evaluations we use Jc =
28.05 meV and Jv = 4.95 meV. The corresponding effec-
tive masses can be evaluated from m∗ = ~2/2Jd2, where d
is the distance between neighboring sites [13]. This choice
of tight-binding couplings models a direct-gap GaAs type
semiconductor in the absence of disorder. The ratio of the
conduction and valence band couplings Jc/Jv matches the
ratio of the inverse ratio of the effective conduction and va-
lence band masses (m∗c/m

∗
v)
−1 for GaAs parameters. For

the Coulomb interaction we use U0 = 15 meV (in two sets
of calculations we use U0 = 0 and U0 = 22.5 meV) and
a0/d = 0.5. This choice of parameters results in exciton
binding energies of a reasonable magnitude. The number
of sites is taken to be N = 10 (in one set of calculations
we use N = 20). These parameters have to be varied,
if one wants to model nanorings with a certain geometry
made of a particular material system. The values used here
were chosen in order to clearly demonstrate how a mag-
netic field qualitatively influences single- and two-exciton
states.

3 Numerical results

3.1 Ordered system

We start by investigating the influence of the enclosed
magnetic flux on the excitonic line in the linear ab-
sorption spectrum. Since all changes are periodic with
cos(2πΦ/Φ0) [6,7] we limit our investigations to 0 ≤
Φ/Φ0 ≤ 0.5. Figure 1a displays the excitonic linear ab-
sorption for different flux ratios R = Φ/Φ0. Note that the
zero of the energy scale corresponds to the lowest opti-
cal transition without Coulomb interaction and without
magnetic field (R = 0, see Fig. 1b), i.e. to the band gap
energy Eg. Thus for R = 0 we have the exciton line at
EX = −11.86 meV which directly corresponds to an ex-
citon binding energy of 11.86 meV. With increasing flux,
Figure 1a shows that the exciton line shifts towards higher
energies and that the oscillator strength is increasing [7].
The variation of the exciton energy with flux closely fol-
lows the cos(2πΦ/Φ0)-law obtained in references [6,7].

A larger excitonic oscillator strength implies that the
part of the exciton wavefunction describing the relative
motion of the electron and hole must have a higher value
at the origin, i.e. at re = rh [20]. This corresponds to an
increased exciton binding energy. Since the exciton bind-
ing energy is defined with respect to the lowest optical
transition of the same system without Coulomb interac-
tion, Eg, we have to calculate also Eg(R), see Figure 1b.

Without magnetic field the lowest optical transition
corresponds in k-space to a transition between the k = 0
electron and hole states. The phase factor introduced by
the magnetic field in real space, see Section 2.1, results in
an effective shift of the allowed values of the wavevectors
in k-space. ThereforeEg(R) increases monotonically when
the enclosed flux increases from Φ = 0 to Φ = 0.5Φ0, see
Figure 1b. The second allowed interband transition, which
is twofold degenerate without magnetic field correspond-
ing to k = 2π/Nd and k = −2π/Nd, splits into two lines
with increasing magnetic field. Due to the magnetic-field-
induced shift of the k-values, one of these lines increases
and one decreases in energy. At Φ = 0.5Φ0 the lowest tran-
sition is twofold degenerate corresponding to k = π/Nd
and k = −π/Nd.

As shown in Figure 1c, −EX(R) is cos-like and de-
creases slightly, whereas Eg(R) increases quadratically
since the cos tight-binding dispersion in the vicinity of
the band-gap is quadratic. Due to the fact that Eg(R) in-
creases more strongly than −EX(R) decreases, the exci-
ton binding energy defined as ∆EX(R) = Eg(R)−EX(R)
increases as function ofR. Thus in agreement with the in-
crease in oscillator strength shown in Figure 1a, we find
that also the exciton binding energy increases when going
from R = 0 to R = 0.5.

An interesting qualitative analogy exists with the shift
of the excitonic absorption in a superlattice biased by an
ac electric field [23]. As the magnetic field considered here,
also the ac electric field used in reference [23] changes
the single-particle dispersion and moves due to dynamical
localization [24–26] the lowest optical transition without
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Fig. 1. (a) Excitonic linear optical absorption spectra and
(b) interband absorption without Coulomb interaction close
to the band gap for various magnetic fields corresponding to
R = Φ/Φ0 = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. In both cases
Lorentzian homogeneous broadening is introduced by insert-
ing a decay time of T2 = 10 ps into equation (14). (c) Band-
gap energy Eg (circles) and the negative of the exciton energy
−EX (triangles up), as well as difference between between both
Eg − EX (triangles down). The symbols correspond to calcu-
lated vales, the lines are guides for the eye.

Coulomb interaction towards higher values. Since this dy-
namical localization is accompanied by a change of the
effective dimension of the exciton from 3 to close to 2, the
binding energy of the exciton increases when the ac elec-
tric field is applied. Thus, as found in reference [23], we
see also here simultaneously a blue shift and an increase of
the oscillator strength and binding energy of the exciton
(Fig. 1a).

As the analysis of references [6,7] has shown, the
change of the exciton energy due to the Aharanov-Bohm
effect does occur only in mesoscopic systems. Since the
effect relies on the finite probability of the electron and
hole forming the exciton to tunnel around the ring, the

-21.0 -20.5 -20.0 -19.5

Φ/Φ0 = 0
0.1
0.2
0.3
0.4
0.5

-12.0 -11.5 -11.0

Fig. 2. Excitonic linear optical absorption spectra for various
magnetic fields corresponding to R = Φ/Φ0 = 0, 0.1, 0.2, 0.3,
0.4, and 0.5. (a) For an increased Coulomb interaction of U0 =
22.5 meV and (b) for an increased system size of N = 20. In
both cases Lorentzian homogeneous broadening is introduced
by inserting a decay time of T2 = 10 ps into equation (14).

exciton Bohr radius needs to be comparable to the diam-
eter of the ring. If we increase the Coulomb interaction by
a factor of 1.5, i.e. we use U0 = 22.5 meV, then the exci-
ton is more strongly bound and the Bohr radius decreases.
Concomitantly, the shift of the exciton energy in the range
R = 0 to R = 0.5 is reduced in Figure 2a as compared to
Figure 1a. Another clear demonstration of the mesoscopic
nature of the excitonic Aharanov-Bohm effect is given in
Figure 2b, where it is shown that when using the original
parameters, i.e. U0 = 15 meV, the effect has almost com-
pletely disappeared for a doubled number of sites N = 20
corresponding to a doubled diameter of the ring.

The nonlinear optical response of the ring is ana-
lyzed by calculating the differential absorption as obtained
in pump-probe spectroscopy performed with counter-
clockwise polarized pulses (σ+σ−). In this geometry the
differential absorption spectra of an ordered system are
purely induced by many-body correlations as long as
only heavy-hole and no light-hole transitions are rele-
vant [8–11]. This is due to the fact that the two degenerate
optically allowed heavy-hole excitons that can be excited
with σ+ and σ− polarized light do not share a common
state, see Section 2.3.
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Fig. 3. Differential absorption spectra using a σ+ polarized
pump and a σ− polarized probe pulse for various magnetic
fields corresponding to R = Φ/Φ0 = 0, 0.1, 0.2, 0.3, 0.4, and
0.5. The pump pulse arrives 2 ps before the probe, its du-
ration is 1.18 ps (FWHM of pulse intensity), and it is spec-
trally tuned to the exciton resonance for each value of the field.
A Lorentzian homogeneous broadening is introduced by insert-
ing a decay time of T2 = 10 ps into equation (14). No broaden-
ing is used in equation (15) in order to obtain spectrally narrow
two-exciton lines. The inset shows the flux dependence of the
biexciton binding energy obtained as ∆EBX = 2EX −EBX .

The spectra displayed in Figure 3 show negative con-
tributions at the exciton energy which correspond to the
pump-induced bleaching of the exciton transition [8,9].
Positive induced absorption appears spectrally below and
above the exciton due to transitions to bound and un-
bound two-excitons, respectively. As the exciton, also the
spectral position of the exciton to bound biexciton tran-
sition, that appears at EBX − EX , shifts towards higher
energies when R increases from 0 to 0.5. The fact that the
exciton to bound biexciton transition shifts more strongly
with R than the exciton line, corresponds to a decrease
of the biexciton binding energy ∆EBX = 2EX − EBX ,
see inset of Figure 3. So comparing the cases R = 0 with
R = 0.5 we find that the increase of the exciton binding
energy is accompanied by a decrease of the biexciton bind-
ing energy of about 15%. This can be understood to be due
to the weaker interaction among the more tightly bound
excitons. If the excitons would be very strongly bound, i.e.

if the electron and hole would be confined to the same site
as in a Frenkel exciton, then the biexciton binding energy
would vanish and only unbound two-excitons would ap-
pear in the spectra [27,28]. Thus with the magnetic-field-
induced stronger exciton binding we go from an extended
Wannier towards a more tightly bound Frenkel exciton.
A decrease of the biexciton binding energy comparing the
cases R = 0 with R = 0.5 has been observed for all pa-
rameters that have been investigated, i.e. this effect seems
to be robust and especially survives for larger as well as
weaker Coulomb interaction (not shown in figure).

As clearly shown in Figure 3, the magnetic field shifts
not only the resonances of bound biexcitons to higher en-
ergies, but also introduces an even stronger red shift of the
lowest unbound two-exciton resonance. I.e. the stronger
binding of the excitons introduces a weaker repulsive in-
teraction among them, which is consistent with the expla-
nation given above.

3.2 Disordered system

Disorder is introduced as a site dependence of the elec-
tron and hole energies, i.e. T cnn = Eg/2 + δεcn and T vnn =
Eg/2+ δεvn. δεcn is taken randomly from a Gaussian distri-
bution function exp(−(δεc)2/2σ2

c), where σc characterizes
the energetic scale of the disorder. We assume that the
disorder for electrons and holes is correlated, which is of-
ten the case in semiconductor nanostructures. Therefore
we take δεvn = (Jv/Jc)δεcn = (m∗c/m

∗
v)δε

c
n, i.e. we weight

the energetic variations inversely with the masses.
Figure 4a displays the excitonic linear optical absorp-

tion spectra for R = 0 (solid) and R = 0.5 (dashed) for
the ordered system. The spectra displayed in Figures 4b
and c were calculated by averaging over 10 000 disorder
realizations (corresponding to a measurement on an en-
semble of 10 000 rings) using σc = 2 meV and 4 meV,
respectively. They show some fluctuations due to the fi-
nite number of disorder realizations and a much broader
and red shifted exciton absorption than the spectra for
the ordered system. This can be understood to be the
result of the disorder-induced inhomogeneous broadening
of the excitonic transition energy. Even for these quite
broad spectra which are characterized by an inhomoge-
neous linewidth that exceeds the magnetic-field-induced
shift of the exciton line, one can still see an effect of the
magnetic field. Thus the shift of the exciton line due to
the magnetic field seems not to be destroyed by energetic
disorder on the scale considered here and even survives
the inhomogeneous broadening.

Even more interesting than the disorder-induced in-
homogeneous broadening is the question of how the dis-
order influences the relative motion of the electron-hole
pair forming the exciton. Note that in order to show
any Aharanov-Bohm effect the relative motion of the
exciton needs to extend over the entire ring, see Sec-
tion 3.1. This condition will not be fulfilled if the dis-
order is strong enough to localize the relative motion to a
small portion of the ring. In order to address this problem
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Fig. 4. Excitonic linear optical absorption spectra for mag-
netic fields corresponding to R = Φ/Φ0 = 0 (solid) and 0.5
(dashed). (a) Without disorder, (b) with disorder described by
σc = 2 meV, and (c) for σc = 4 meV. Lorentzian homoge-
neous broadening is introduced by inserting a decay time of
T2 = 10 ps into equation (14). For (b) and (c) the spectra have
been averaged over 10 000 disorder realizations.

we investigate linear and nonlinear absorption spectra for
individual disorder realizations.

For σc = 4 meV the magnetic-field-induced shift of the
exciton energy is still present, see Figures 5a–c, however, it
is smaller than without disorder (cp. Fig. 1a) and its pre-
cise value depends on the disorder realization. Whereas for
one realization, Figure 5a, there is still some observable in-
crease of the oscillator strength of the exciton, it gets much
smaller for another realization, Figure 5b, and is absent
in the third case, Figure 5c. Consequently, only for one
disorder realization (Fig. 5a) the magnetic field does still
significantly influence the relative motion of the exciton.
This results in a clear reduction of the interaction among
excitons as demonstrated by the corresponding nonlinear
pump-probe spectrum shown in Figure 5g. As in the or-
dered case, the energy difference between the exciton and
the bound biexciton as well as between the exciton and the
lowest unbound two-exciton state is smaller for R = 0.5
than for R = 0. In Figures 5h and i on the other hand,
the biexciton binding energy is unaffected by the mag-
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Fig. 5. Left panels: Excitonic linear optical absorption spectra
for magnetic fields corresponding to R = Φ/Φ0 = 0 (solid) and
0.5 (dashed). (a–c) three individual disorder realizations with
σc = 4 meV and (d–f) the same realizations for σc = 10 meV.
Right panels: Differential absorption spectra using a σ+ polar-
ized pump and a σ− polarized probe pulse for R = Φ/Φ0 = 0
(solid) and 0.5 (dashed). (g–i) for the same disorder realizations
as (a–c) and (j–l) for the same disorder realizations as (d–e).
The pump pulse arrives 2 ps before the probe, its duration is
1.18 ps (FWHM of pulse intensity), and it is spectrally tuned to
the exciton resonance for each value of the field. A Lorentzian
homogeneous broadening is introduced by inserting a decay
time of T2 = 10 ps into equation (14). No broadening is used in
equation (15) in order to obtain spectrally narrow two-exciton
lines. Zero differential absorption is indicated by the horizontal
line.

netic field. One can still see some reduction of the energy
difference between the exciton and the lowest unbound
two-exciton state in Figure 5h. Additionally, the disorder
is responsible for the weak additional lines appearing the
in pump-probe spectra.

Even when the disorder is increased to σc = 10 meV
(note that this value is close to the exciton binding en-
ergy) all three realizations still show some reduced shift
of the exciton energy, see Figures 5d–f. The weak absorp-
tion line above the lowest exciton appearing in Figure 5d
is induced by the disorder. For σc = 10 meV, however,
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no realization shows any increase of the exciton oscillator
strength. Consequently, also the biexciton binding energy
is unaffected by the magnetic field, see Figures 5j–l.

4 Summary

Linear and nonlinear optical properties of interband
transitions in semiconductor nanorings in the presence
of penetrating magnetic fields have been investigated. As
predicted in references [6,7], the spectral position of the
exciton line in the linear absorption spectra as well as its
oscillator strength change periodically with the magnetic
flux Φ enclosed by the ring. The period of these oscillations
is given by the flux quantum Φ0 = hc/e.

By analyzing nonlinear pump-probe spectra performed
with counter-clockwise polarized pulses it is demon-
strated that the magnetic field modifies the Coulombic
many-particle correlations. The stronger exciton binding
induced by the magnetic field leads to a weaker interac-
tion among the excitons. In particular, the binding en-
ergy of the bound biexciton changes as function of Φ and
is smaller for Φ/Φ0 = 0.5 than without magnetic field,
whereas the exciton binding energy increases. Our find-
ings demonstrate that the Aharanov-Bohm effect leads to
a characteristic influence on quasiparticles like excitons
and biexcitons. We believe that it should be possible to
experimentally investigate such effects using optical in-
terband spectroscopy performed on high-quality semicon-
ductor nanorings. To be able to observe Aharanov-Bohm
effects the diameter of the nanorings should not be much
bigger than the exciton Bohr radius [7], and their width
must be much smaller.

Since semiconductor nanostructures are typically not
fully ordered systems, we have investigated the influence
of disorder on the linear and nonlinear optical properties
of semiconductor rings. It is demonstrated that in an en-
semble averaged measurement the magnetic-field-induced
shift of the exciton line survives even when the disorder-
induced inhomogeneous broadening of the spectral lines is
larger than the shift. By studying single rings it is demon-
strated that for intermediate disorder the strength of the
Aharanov-Bohm effects for the excitons and biexcitons
may depend on the disorder realization. When the ener-
getic disorder is on the scale of the exciton binding energy
the influence of the magnetic field on the relative motion
of the exciton is suppressed.
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